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Introduction

Those who have taken a �rst course in statistics might have learned the basics of statistical
hypothesis testing. Normally the instruction in such courses is practically oriented: you
get to know how to perform statistical hypothesis testing in a couple of typical situations,
but time will not allow a full treatment of the rationale for such testing. Also, the teaching
might conceal that there could be alternative ways of performing statistical hypothesis
testing other than the method actually taught. What is being taught as standard statistical
hypothesis testing could be a bricolage of ideas from di�erent theorists, not necessarily
adding up to a coherent whole upon scrutiny.
This text is intended to present statistical hypothesis testing in an argumentative and

philosophical context. It will display and contrast various ideas of hypothesis testing
against one another and will hopefully put the reader in a position to argue for and against
di�erent models of hypothesis testing. The ideal reader should be familiar with the
mathematics typically encountered in simple statistical hypothesis testing, i.e. frequently
used statistical distributions and basic theory of probability.
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What is statistical hypothesis testing?

A hypothesis may be described as “a hunch, speculation, or conjecture proposed as a
possible solution to a problem, and requiring further investigation of its acceptability
by argument or observation and experiment” (Belsey, 1995). A hypothesis, then, is a
statement that is (or should be) open to testing. According to generally acknowledged
accounts of scienti�c progress, science proceeds by the acceptance or rejection of hy-
potheses in relation to the available evidence. The exact nature and scope of this process
is, of course, subject to di�erent opinions among philosophers. It is agreed, however,
that statistical hypothesis testing is a subset of the general category of scienti�c inference.
Statistical hypothesis testing is thus an important part of science. The adjective “statistical”
signi�es that the evidence is statistical in nature. However, since statistics is such a broad
term (“the department of study that has for its object the collection and arrangement
of numerical facts or data”, according to The Oxford English Dictionary), this is not a
su�cient condition for classifying an inference as an instance of statistical hypothesis
testing. An additional necessary condition is that at least one hypothesis in the test is
statistical in nature.
For example, the perennial philosophical problem of induction is usually not taken

as an instance of statistical hypothesis testing, although the available evidence may well
be considered statistical in nature (“this swan is white, that swan is white, another swan I
observed was white as well, . . . ”). A plausible reason for this is that the wanted conclusion,
namely “All Fs are Gs”, is not generally understood as a statistical hypothesis. On the
other hand, the statement “80% of all Fs are Gs” is a statistical hypothesis for sure, as
is, e.g., the statement “when tossed, this coin will show heads and tails up with equal
probability”.

John Arbuthnot’s test

John Arbuthnot1 (1667–1735) was Queen Anne’s physician during 1709–1714 and pub-
lished a note called “An argument for Divine Providence, taken from the constant regu-
larity observ’d in the births of both sexes” in the Philosophical Transactions of the Royal
Society in 1710 (Stigler, 1986:225f). Arbuthnot claimed that the sex of a newborn might
be represented by the throw of a two-sided die (or the �ipping of a coin), the faces of
which he took as equiprobable to turn up. However, data on christenings in London
for the period 1629–1710, i.e. 82 consecutive years, showed that male births exceeded
female births for each and every year. In other words, all 82 years were “boy years”, if by
this we mean years where boys formed a majority among newborns. The probability
of having 82 consecutive boy years under the hypothesis of even chances, Arbuthnot
argued, is ( 12)

82
, a very tiny probability indeed. (In fact, this probability is approximately

2.1 × 10−25.) Arbuthnot concluded that “it is Art, not Chance, that governs” (Stigler,
1986:226). Arbuthnot’s argument was widely adopted by priests as evidence for divine
intervention (Hacking, 1965:77). It should be noted, however, that Arbuthnot was a
well-known satirist, friend of Jonathan Swi�. He may well have had his tongue in cheek.
Arbuthnot’s argument is considered one of the earliest examples of statistical hypoth-

esis testing. Let us try to state in more general terms (and more carefully) the procedure

1His name is pronounced with stress on the second syllable: /A:"b2θn9t/.
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and logic of John Arbuthnot’s test. He started with the formulation of a hypothesis. In
this case the hypothesis (let’s call it H0,gen) was that there is an even chance whether
a newborn will be a girl or a boy. Although not necessarily credible in the eyes of the
researcher (Arbuthnot most certainly knew that boys were more numerous than girls
among newborns), this is an easy hypothesis to formulate and an easy one to model
mathematically. We may call it a null hypothesis, hence the subscript “0”. The subscript
“gen” is read “general”, so that H0,gen is the general null hypothesis. The rationale for
this name is that this hypothesis might be more general than the hypothesis we will
actually use mathematically in the test. As for the term “null” and the exact nature of
null hypotheses, we will return to this issue (see page 20).
Having stated the hypothesis in words, we need to model it mathematically in a way

that can be used for comparison with the data we have (or will have). In Arbuthnot’s case,
the data concern the number of boy years in a series of 82 consecutive years. Therefore, a
suitable hypothesis following from H0,gen is that approximately half of the years ought to
be boy years in the series. We call this hypothesis H0. Modeled more exactly, it states that
d, understood as the number of boy years, is the outcome of a Bin(82, 12 ) distribution,
i.e. a binomial distribution with 82 independent trials, each with probability 12 .
I would like to stress the di�erence between H0,gen and H0 here. From the original

(general) hypothesis H0,gen that there is an even chance whether a newborn will be a
girl or a boy, many speci�c hypotheses useful for a test can be derived. For example,
under H0,gen there should be around 50 boys among 100 newborns. But that particular
piece of information is not of much help to us, since our actual data are not concerned
with the number of boys among 100 newborns, but with the number of boy years in
82 consecutive years. Therefore, we need to spell out a hypothesis H0 that speci�es the
statistical behavior of the data we have (or will have). Hence we take H0 as explained
in the preceding paragraph. The passing from H0,gen to H0 is justi�ed in Arbuthnot’s
case, i.e. H0 follows with mathematical certainty from H0,gen, but the proof was probably
beyond Arbuthnot’s knowledge (Hacking, 1965:76). It is useful to distinguish between
H0,gen andH0, for it is not always obvious that theH0 used in a test is a fair representation
of H0,gen. Examples will be given later in this text.2
Having stated H0 mathematically we now compare the actual outcome with what

could be expected if H0 were true. More precisely, we calculate the probability of the
outcome given H0; using the formalism of probability theory this is P(d∣H0), where d
denotes the outcome (data) that we actually observed. (In this text, uppercase P denotes
probability in general, whereas lowercase p will denote a particular probability, to be
explained later.)
From the calculated probability, we decide whether to accept or reject H0 (and hence

H0,gen). In Arbuthnot’s case, he decided that the probability P(d∣H0) was so tiny that
H0,gen must be rejected. If H0 follows from H0,gen, as in Arbuthnot’s case, rejecting
H0,gen on the ground that H0 has been rejected is logically an instance of the rulemodus
tollens.3

2What I have here called the “general null hypothesis” (H0,gen) could in some cases more aptly be dubbed a
theory, or at least be considered part of a theory, so that the distinction between H0,gen and H0 is a distinction,
more or less, between a theory and a hypothesis. Here is not, however, the proper place for discussing the
relation between theories and hypotheses.
3Also known as “denying the consequent”. This rule says that from if P, then Q and not Q we conclude not P.

In Arbuthnot’s case, from if H0,gen then H0 and not H0 it follows that not H0,gen .
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Hence, we can list the steps in John Arbuthnot’s test as follows:

1. Formulate a hypothesis to be tested, H0,gen.
2. Model the hypothesis mathematically so that it is relevant to the data that will be
or has been collected. This hypothesis is called H0.

3. Calculate P(d∣H0), where d is the data actually observed.
4. Judging from the value of P(d∣H0), decide whether to keep or to reject H0 (and
hence H0,gen).

This list describes quite accurately what John Arbuthnot did. But a little re�ection
will show that the steps provided in the list are not clear enough to be used successfully
in a variety of similar situations. In fact, all steps need clari�cation.

Problems in the outlined test procedure

First, we could ask: Will there always be a single way of reasonably modeling H0 from a
formulated H0,gen? The answer is no. An early example of statistical reasoning is that
of natural philosopher John Michell (1724–1793), who calculated that if the visible stars
were scattered at random over the sky, much more rarely would they form double stars
and clusters than what we can actually observe. Michell reported this in the Philosophi-
cal Transactions of the Royal Society of London in 1767. French mathematician Joseph
Bertrand (1822–1900) has commented on Michell’s writings. Bertrand agreed that there
should be no clusters such as the Pleiades under the hypothesis of random distribution
of stars, but pointed to the vagueness of the concept of closeness:

“In order to make precise this vague idea of closeness, should we search for the
smallest circle that contains the group? The greatest of the angular distances? The
sum of all distances squared? The area of the spherical polygon the vertices of which
coincide with some of the stars and that contains the other stars in its interior? All
these quantities are for the Pleiades cluster smaller than what is probable. Which of
them gives the measure of improbability?” (Bertrand, 1889:171, my translation).4

We have to decide exactly which test to use. In other words, we must decide upon a
speci�c test statistic. A test statistic is a function taking data (in suitable form) as input
and giving as output a numerical value that can be used to perform a test.5 In order for
the output value to be useful, we need to know that it can be regarded as the outcome
of a speci�ed statistical probability function under H0. We can denote the test statistic
as T(d), being a function of the data d. In Arbuthnot’s case, the test statistic is simply
T(d) = d, where d is understood as the number of boy years. In Arbuthnot’s case, we
know that T(d) = d would be an outcome of the Bin(82, 12 ) distribution if H0 is true.
Secondly, even ifH0 follows fromH0,gen, wemustmake sure there is no other relevant

information speaking against H0 as a realistic hypothesis. A clear example where this

4“Faut-il, pour préciser cette idée vague de rapprochement, chercher le plus petit cercle qui contienne le
groupe? la plus grande des distances angulaires? la somme des carrés de toutes les distances? l’aire du polygone
sphérique dont quelques-unes des étoiles sont les sommets et qui contient les autres dans son intérieur? Toutes
ces grandeurs, dans le groupe des Pléïades, sont plus petites qu’il n’est vraisemblable. Laquelle d’entre elles
donnera la mesure de l’invraisemblance?”

5Normally, the test statistic will give just one output value for each combination of input data. However, it
is possible to use test statistics giving a vector (multi-valued) output. A vector output may be needed for tests
of hypotheses involving both magnitudes and orderings of data. We will not consider such cases in this text.
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issue was ignored is an article by Chadwick & Jensen (1971), a study of dowsing (i.e. the
purported ability to �nd objects with the aid of a handheld forked rod or a bent wire).
Chadwick & Jensen made voluntary test persons walk with a dowsing rod along a straight
test path, located between two long lines of fruit trees. In one spot along the path, a
large iron object had been hidden underground. This object locally a�ected the earth’s
magnetic �eld slightly. The researchers’ idea was that this magnetic disturbance would
result in more hits near this spot. The result, however, showed no accumulation of hits
near the hidden iron object. The authors’H0,gen was that the participants had no ability to
detect variations in the earth’s magntic �eld by dowsing. The authors’ H0 was that when
the test path was divided into small sections, the hits should be randomly distributed
over these sections as measured by the appropriate χ2 statistic.
But this step from H0,gen to H0 is very dubious. Even if dowsing would not give

any information in addition to what is perceived with the normal senses, we should not
expect dowsers to get hits completely at random. When walking with a dowsing rod
along lines of fruit trees, almost anything could trigger a reaction in the dowser’s hands,
causing the rod to bend: a beautiful fruit on a nearby tree, a peculiar stone, a wasted
sweet paper on the ground, etc. There is really no reason for us to assume that the hits
would be distributed completely at random under these circumstances, and hence the χ2

test adopted by the researchers is irrelevant.
The main moral of this story is, I believe, that living things might not behave exactly

according to laws of chance, unless factors contributing to non-chance behavior are ruled
out. If your hypothesis involves humans or animals, you are justi�ed in assuming that
they will behave according to a statistical hypothesis only if you can rule out the presence
of such disturbing factors. Sometimes, this can be quite di�cult in practice.
Thirdly, there is something quite unclear about Arbuthnot’s argument when he

concluded that H0 should be rejected. In his case, the actual data d were the most
extreme that could be conceived: not in a single year during 82 years did the girls form
a majority among newborns. What would Arbuthnot have said if his data showed that
boys were in majority for, say, 70 years out of 82? The probability of getting 70 boy years
out of 82 under H0 is 1.7 × 10−11. This is a very small probability, though admittedly not
as small as the probability for zero boy years out of 82. What about the probability of
having, say, 34 boy years out of 82? It is 0.027. That, too, is a small probability, but I
would guess that few would reject H0 a�er getting 34 as the outcome of a hypothesized
Bin(82, 12 ) distribution. In other words, getting 34 out of 82 seems quite plausible under
H0 although the probability is no more than 0.027.

Forming a rejection set

Thinkingmore carefully about these �gures, it seems unreasonable to base the conclusion
whether to accept or to reject H0 solely on the probability P(d∣H0), for this probability
is dependent on the possible range of d, which in turn is dependent on the sample size
in the test (here: the number of years checked). For example, the probability of having 34
boy years out of 82 years is 0.027, but the probability of having 0 boy years in 5 consecutive
years is 0.031. Although the latter probability is greater, many of us would view the latter
outcome as less supported by the null hypothesis of an even chance than the former
outcome. In doing this, we probably reason that 34 out of 82 is not very far removed
from the statistical expected value (which is 41). Although the exact outcome 34 out of
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82 is not in itself very probable under H0, there are several possible outcomes that are
even less probable (for example, 33 out of 82, or 32 out of 82, not to mention 10 out of 82).
In the other scenario, 0 out of 5 is as far away from the expected value you can get, and
there are no other outcomes that are less probable.
The morale is that it seems reasonable to consider a wider class of possibilities than

merely the actual outcome. In other words, we need to select a rejection set of outcomes.
When the value calculated from the test statistic T(d) is in the rejection set, we reject
H0. We may call the rejection set w and the total outcome spaceW . Intuitively, then, the
rejection set should have the following properties:

A. Under H0, the probability of getting a random outcome in w should be low. Thus,
w should consist of only a small portion of the total outcome spaceW (provided
that each outcome is equiprobable).

B. w should contain only outcomes that deviate considerably from the statistical
expected value under H0.

C. The elements of w should in some sense be close to one another; w should not be
formed, at least not exclusively, by scattered and isolated outcomes inW .6

Property A is reasonable because we don’t want to reject H0 lightly. We would like to
reject H0 only when the result at hand is contained in a small (and hence improbable) set
of all possible outcomes. The number of possible outcomes in w divided by the number
of all possible outcomesW could be called the size of the test, but is more commonly
known as the nominal signi�cance level.7 Here we shall denote it p0. (I write “the number
of possible outcomes” because all permutations that lead to the same test statistic value
must be considered as separate possible outcomes. For example, in John Arbuthnot’s test
there are∑82k=0 (

82
k ) ≈ 4.8 × 10

24 ways of selecting n years out of 82 years, where n could
be any integer from 0 to 82, and hence this is the number of possible outcomes inW .
Many of these of course correspond to the same test statistic value, since there are only
83 of them: 0, 1, 2, . . . , 82.) Put brie�y, the nominal signi�cance level is the probability
that a random outcome x under H0 is in w, that is p0 = P(x ⊂ w∣H0).
Property B says that the values of T(d) giving rise to a rejection of H0 ought to be

“extreme” given H0, i.e. the values should not be too close to what could be expected
under H0. This is quite self-evident as long as we are testing a hypothesis with a test
statistic yielding a single value. For example, in Arbuthnot’s test the statistic T(d) gave
a single value, viz. an integer from the set {0, 1, 2, . . . , 82}.8 We should note that even
when the test statistic gives a single value, it is o�en reasonable to say that H0 could be
rejected if this value is unusually small or unusually great. This means that there are
two separate subsets of w, one corresponding to deviations from the expected value in
one direction and another corresponding to deviations in the opposite direction. In
such cases, we say that the test is two-sided (or two-tailed). Returning to the Arbuthnot
example again, it would seem fully reasonable to take, e.g., the following rejection set:

6It is, however, possible to �nd an exception: if the probability distribution modelling H0 is unimodal, a
reasonable rejection set may contain two values only, one in each tail of the distribution. The rejection set will
then be formed exclusively by isolated outcomes.

7It is recommended to use the adjective “nominal”, in order to distinguish it from the calculated signi�cance
level p, which will be presented below.

8In more complicated cases, the test statistic might not yield a single value (see footnote 5), and it could
be impossible to order the outcomes in any natural way. If this is the case, we are unable to tell whether a
particular result is more extreme than another.
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w = {d ∶ T(d) ≤ 30 or T(d) ≥ 52}. The rejection set thus consists of the data such that
T(d) ≤ 30 or T(d) ≥ 52. These are two separate areas of data if we look at the situation
from the perspective of the probability distribution function of T(d) underH0, as shown
in �gure 1.
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Figure 1 – The probability distribution function for T(d) under H0 in John Arbuth-
not’s test. For each integer along the x axis (0, 1, 2, . . . 82), the height of the bar shows
the corresponding probability. The black bars correspond to a proposed rejection set
(not the one actually used by Arbuthnot). The highest bar is the one for d = 41.

Speaking of deviations from the statistically expected value, it is useful to de�ne D
as the set of outcomes that includes the actual outcome d and all other outcomes that
are less probable than d under H0. The probability of having an outcome in D under
H0 is known as the p value or the signi�cance level. In mathematical language, we can
say that p = P(D∣H0). Normally, this probability will correspond to two separate areas
in a probability function graph for T(d) under H0, just as in �gure 1, and will hence be
relevant for a two-sided test. In one-sided tests, D must be de�ned as the set of outcomes
that includes d and all other outcomes that are less probable than d under H0 and which
deviate from the expected value under H0 in the same direction as d (the added clause for
a one-sided test is in italics).
Property C, �nally, is reasonable because there is something quite arbitrary with

a rejection set that contains outcomes many of which are not close to the others. For
example, let us roll a six-sided die three times. There are 63 = 216 possible outcomes. We
would like to test whether the die is fair or not. Suppose that the outcome of each toss is
called d i (i = 1, 2, 3) and that we use the sum of the outcomes as our test statistic: T(d) =
∑i d i . Also suppose that we choose as our rejection set the outcomes d = {d1 , d2 , d3}
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being in
w = {d ∶ T(d) = 16 or T(d) = 18}.

In other words, w contains those outcomes d1, d2, and d3 such that their sum is 16 or
18. Since there are 6 combinations giving the sum T(d) = 16 and 1 combination giving
T(d) = 18, and since W contains a total number of 216 possible outcomes (i.e. 216
combinations < d1 , d2 , d3 > where any d i may take the value 1, 2, . . . , 6), the nominal
signi�cance level is p0 = 7

216 ≈ 0.0324. This value is not great, and hence property A is
ful�lled. Furthermore, the values of T(d) included in w deviate considerably from the
expected value of T(d) under H0, which is T(d) = 10.5. Thus, property B is ful�lled
as well. But property C is not ful�lled, since there is no explanation for why T(d) = 17
has been excluded from w. If T(d) = 16 and T(d) = 18 are both found to be �tting for
inclusion in w, a very good reason should be presented for not including T(d) = 17 as
well, but there seems to be no such reason. Sow has a strange composition, unacceptable
according to requirement C. (Another thing that could be discussed in this particular
case is: why are only large values of T(d) included? Wouldn’t we suspect that the die is
unfair also in the case of obtaining a very low value for T(d), for example T(d) = 3?)

Fisherian hypothesis testing

Taking the above considerations into account, we can now make a new list of test steps,
more elaborate than the previous one:

1. Formulate a hypothesis to be tested, preferably of null type, called H0,gen. (We will
return to the issue of what is meant by the term “null”).

2. ModelH0,genmathematically so that it is relevant to the data d that will be collected.
This mathematically modeled hypothesis is called H0 and should follow with the
aid of logic and rational reasoning from H0,gen. Also, make sure there is no other
relevant information speaking against H0 as a valid null hypothesis for all possible
outcomes. State the test statistic T(d).

3. For T(d), decide upon a rejection set w in the outcome spaceW , thereby estab-
lishing the nominal signi�cance level (p0).

4. Collect your data d and check whether T(d) is in w or not. You should also
calculate the p value of your data, i.e. P(D∣H0), where D is the set of outcomes
that includes d and all other outcomes that are less probable than d underH0 (and,
for a one-sided test with a unimodal modelling of H0, which deviate from H0 in
the same direction as d).

5. If T(d) is in w, or equivalently, if p < p0, reject H0 and hence H0,gen, otherwise
accept H0,gen. State your p value, if you calculated it in step 4.

A well-known advocate of this kind of statistical hypothesis testing was Ronald
A. Fisher (1890–1962), who developed its theory in the 1920’s and 1930’s and disseminated
his ideas of statistical hypothesis testing in highly in�uential textbooks that were issued
in several editions until the 1950’s.9We may therefore call the above list of steps a recipe

9Of course, there were forerunners to Fisher in various respects. For example, the American philosopher
Charles S. Peirce (1839–1914) discussed a situation similar to a Fisherian hypothesis testing in 1878. A summary
of Peirce’s argument runs as follows (Peirce, 1878). In the 1870 US census the proportion of boys among white
children aged under 1 year was 0.5082. The corresponding �gure for colored toddlers was 0.4977. Could this
di�erence be explained by chance? Comparing with a situation in which s balls are drawn from an urn with the



statistical hypothesis testing 9

Face Occurrences
1 23
2 18
3 15
4 21
5 26
6 17

Table 1 – Results of rolling a die 120 times.

for Fisherian hypothesis testing.10

Two examples

I will now give two examples, close to standard statistics textbook examples, in order to
show how the conceptual apparatus presented in the list above can be applied in practice.

1. Testing the fairness of a die

We throw a six-sided die 120 times to test whether it is fair or not (i.e. whether the
probability is 16 for all faces or not). Our H0,gen is that the die is fair. Our H0 is that
the data collected from 120 rolls will conform to the χ2 distribution (with 5 degrees of
freedom). The test statistic is T(d) = χ2(d) = ∑n

i=1
(d i−e i)2

e i
, where d i is the observed

number of rolls showing the face i upwards (i = 1, 2, 3, 4, 5, 6), e i is the expected number,
and n is the number of faces (i.e. n = 6). In our case, e i = 20 for all faces. As the rejection
set w we select those values of the χ2 distribution that form the top 5% values. This is
reasonable since larger deviations from the expected occurrences under H0 will yield a
higher value of χ2(d). From statistical tables we �nd that in our case we should reject H0
if the test statistic value χ2(d) is greater than 11.07. In other words, the rejection set is

w = {d ∶ T(d) > 11.07}.

It turns out that our actual data are as shown in table 1. We calculate χ2(d) and get

χ2(d) = 32

20
+ (−2)

2

20
+ (−5)

2

20
+ 1

2

20
+ 6

2

20
+ (−3)

2

20
= 4.2.

Since the calculated χ2(d) is less than the value required to reject H0, we conclude that
H0 can be kept. Thus, the data do not urge us to suspect that the die is unfair.

true proportion p white balls, Pierce found that 99 times out of 100 the error in the proportion of the sample
will be no greater than 1.821

√

2p(1 − p)/s, and 9 999 999 999 times out of 10 000 000 000 no greater than
4.77
√

2p(1 − p)/s. Using p = 12 Pierce found, with swhite = 1 000 000 and scol ored = 150 000, that a combined
error as great as that really observed should be found by chance only once in 10 000 000 000 censuses. Hence
the observed di�erence is very unlikely to be due to chance. Although Peirce did not use the wording “rejection
of a hypothesis”, it may well be how he thought about the situation.
10The exact wording does not follow Fisher. Rather, the list is an interpretation of how he might have argued

had he been asked to provide a list of test steps.
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2. Comparing body lengths in two male populations

As a second example, consider two groups of adult males. We wish to �nd out whether
body lengths are equal or di�erent in the two groups. But the groups are so large that
we have to base our verdict on information not from the entire populations but from
smaller samples. From the �rst group, called A, we randomly draw nA = 25 males and
�nd that their mean length is d̄A = 182.2 cm with the standard deviation sA = 6.6 cm.
From the second group, B, we pick nB = 27 males by random and �nd their mean body
length to be d̄B = 178.5 cm with standard deviation sB = 6.9 cm. If we assume that the
individual body lengths are outcomes of normal distributions with a common standard
deviation, a �tting H0 is that our data d = {nA, d̄A, sA, nB , d̄B , sB} will conform to the
so-called t distribution with nA + nB − 2 degrees of freedom if combined according to
the test statistic formula

t(d) = d̄A − d̄B√
(nA−1)s2A+(nB−1)s2B

nA+nB−2 ( 1nA
+ 1

nB
)
.

We know that this test statistic behaves according to the t distribution under H0. The t
distribution is symmetrical around zero. In order to perform a two-sided test – meaning
that if the di�erence between d̄A and d̄B is great enough, it may lead to a rejection of H0
irrespective of whether d̄A is greater than d̄B or vice versa – we take as our rejection set
w the top 2.5 % and the bottom 2.5 % of the values of the t distribution, in our case with
nA + nB − 2 = 50 degrees of freedom. From statistical tables we �nd that if ∣t(d)∣ exceeds
1.676 we should reject H0. In other words, our rejection set is

w = {d∶ ∣t(d)∣ > 1.676}

Using our empirical data, we get

t(d) = 182.2 − 178.5
√

24⋅(6.6)2+26⋅(6.9)2
50 ( 125 +

1
27)

≈ 1.973.

This value exceeds 1.676. Our conclusion must be that we reject H0. There is thus a
signi�cant (p < 0.05) di�erence in body lengths between the two populations, according
to the evidence from our samples.

Drawbacks and criticisms

Even though the Fisherian list of test steps is better than the previous ones — and
fully functioning, judging from the two worked examples given above — there is still
considerable room for critical questions.

The logic of rejection and the credibility of hypotheses

For example, we could ask: What is the best way of formulating a null hypothesis? Why
a null hypothesis in the �rst place? We shall, however, postpone these questions until a
later section (starting on page 20).
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Instead, let us start with this question: What is the rationale and logic of an inference
using the Fisherian list? Fisher himself, discussing John Michell’s calculations showing
that the visible stars were not dispersed at random, wrote:

“The force with which such a conclusion is supported is logically that of a simple
disjunction: Either an exceptionally rare chance has occurred, or the theory of
random distribution is not true” (Fisher, 1956:39).

So, says Fisher, when we reject H0 (in this case a hypothesis of random distribution),
we do this because either it is false, or it is true but an “exceptionally rare” chance
has occurred.11 Reasonable as it may seem, however, Fisher’s assertion is not entirely
correct. Even if we say that we test a single hypothesis, we are not testing it in isolation.
When we say that we test a single hypothesis H0, in reality this means that we test H0
alongside a set of auxiliary hypotheses HA,1 ,HA,2 , . . . ,HA,k . When the test tells us to
reject H0, we should really interpret this as an exhortation to reject at least one of the
hypothesesH0 ,HA,1 ,HA,2 , . . . ,HA,k . There are always auxiliary hypotheses involved, for
example concerning the proper functioning of apparatus or the comparability of groups
at baseline.12 Since we have not modeled these auxiliary hypotheses mathematically, we
cannot say for sure that the situation of rejecting H0 is accurately described by Fisher’s
disjunction.
If we rejectH0 (and hence, normally, H0,gen), the test cannot tell us which hypothesis

to adopt instead of the rejected one. In other words, by rejecting H0 we have not gained
support for any other, speci�c hypothesis. The explanation for this is that H0 could be
wrong for so many di�erent reasons. But since the test was concerned only with the
accepting or rejection of H0 (the only hypothesis mathematically modeled), the test says
nothing about the credibility of other hypotheses.
This limitation of testing a single hypothesis is o�en misunderstood, sometimes

even by statisticians. In a well-known Swedish textbook in statistics, a parapsychological
experiment is taken as an example of hypothesis testing: a person claims to be able to
tell whether heads or tails will turn up in coin tossing. This, the claimant says, is done
through extrasensory perception (esp). H0,gen is that the claimant does not have an
esp ability. For a series of 12 tossings, H0 is that the number of correct answers comes
from the Bin(12, 12 ) distribution. A calculation shows that the null hypothesis should be
rejected at the 5% signi�cance level if the claimant is right in 10 cases or more.13 The
book states:

”Hence, if the person answers correctly 10 times or more, we should say that he has
an esp ability, but not so if he doesn’t” (Blom et al., 2005:321, my translation).14

This is plain wrong. If the person answers correctly in 10 trials or more out of 12, we
are justi�ed in rejecting H0 at the 5% signi�cance level, but we are not automatically
permitted to endorse the alternative hypothesis of an esp ability, for there are other

11One could question that the wording “exceptionally rare” is appropriate. A nominal signi�cance level of
0.05 is o�en used. Personally, I would not judge a result that could appear by chance with a probability of 0.05
as “exceptionally rare”.
12Cf the �nal section, starting on page 24.
13The corresponding p value is 0.0193. Being right in only 9 cases or more corresponds to p = 0.0730,

exceeding the stipulated 5% signi�cance level.
14Original text: “Om personen svarar rätt minst 10 gånger bör man alltså påstå att han har ESP, men inte

annars.”



12 jesper jerkert

alternative hypotheses that are fully compatible with the result (e.g. the test subject is
cheating, or the coin is not a proper randomizer, or the test person simply was lucky)
and the test does not urge us to select any particular alternative. A test involving a
single hypothesis H0 cannot assist us in selecting which alternative hypothesis is the
best; it cannot even say whether any particular alternative hypothesis (e.g. the claimant
is cheating) is more probable than H0, nor whether di�erent alternative hypotheses are
more likely than one another (e.g., the test subject is cheating vs. the coin is not a proper
randomizer). Only a test involving at least two hypotheses, all of which are statistically
modeled, can tell us that one hypothesis is more likely than another, given the outcome.
Even if we do not reject H0 (and H0,gen), there are critical questions to be asked.

If we should retain H0 according to the test, we still do not know how much faith we
should have in it, for no weight is given to our initial belief or disbelief in H0 and H0,gen.
According to the list of test steps, the test should be performed identically irrespective of
whether the tested hypothesis is judged to be very probable (e.g., no paranormal powers
exist) or as highly unlikely (e.g., this drug has no e�ect on a given disease). It might
be felt that a good test should take such assessments into account. However, this is not
possible within the test paradigm discussed so far.
Whether we accept or reject H0 (and H0,gen), we are asked to compute the p value,

if possible. In all kinds of research papers involving statistics, p values are given and
discussed. But it can be doubted that the p value is important. A very common misun-
derstanding concerning p is that it denotes the probability of a hypothesis. As explained
above, this is not right. The p value is about P(D∣H0), that is the probability of a set
of outcomes D given the null hypothesis H0. It is thus about the probability of certain
outcomes, not the probability of any hypothesis. Although Fisher himself did not mix
up probabilities of outcomes with probabilities of hypotheses, he made other disputable
statements on the proper interpretation of p values:

“When a prediction is made, having a known low degree of probability, such as
that a particular throw with four dice shall show four sixes, an event known to have
a mathematical probability, in the strict sense, of 1 in 1296, the same reluctance
will be felt towards accepting this assertion, and for just the same reason, indeed,
that a similar reluctance is shown to accepting a hypothesis rejected at this level of
signi�cance” (Fisher 1956:43).

In the case of the dice-throwing prediction, there is (according to Fisher’s example) a
known probability of having a certain outcome. In other words, we know the probability
distribution that governs the behaviour of the four dice. In the case of the rejection of
a hypothesis H0, we do not know whether the hypothesis is true or not, or else there
would be no point in testing H0 in a formal hypothesis test. This important di�erence is
ignored in Fisher’s statement.
When people are mistaken as to what p means, they o�en seem to think that p

denotes P(H0∣d), i.e. the probability that H0 (and hence, we assume, H0,gen) is true
given the actual data d. And we can all agree that it would be very interesting to estimate
this probability. That probability, however, is not obtainable within the test framework
presented so far. The only feasible way of obtaining P(H0∣d) would be to use Bayes’s
theorem, which requires our initial belief in H0 to be stated as a prior probability p(H0).
This method will be discussed in the section starting on page 22.
A general criticism against the use of signi�cance levels is that it dichotomizes a

continuous scale: a result is either signi�cant or not; the p value is either lower than
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the predetermined nominal signi�cance level or it is not. Results that are statistically
signi�cant are normally given much greater attention than non-signi�cant results. But
the exact nominal signi�cance level is of course arbitrarily set. A result corresponding to
p = 0.06 may be very interesting although it is not labeled “signi�cant”. And vice versa:
statistical signi�cance is not the same as material or practical signi�cance (or, in medical
settings, clinical signi�cance). That a result is statistically signi�cant means that there is
a deviation from the null hypothesis, but such a deviation may be very small and still
statistically signi�cant if the sample size is large. In fact, any departure from null will be
signi�cant at a pre-assigned p0 level provided the sample size is large enough. It could
therefore be argued that signi�cant results with small sample sizes are more interesting
than signi�cant results from tests with large sample sizes, for signi�cant results from
small samples will more o�en correspond to a larger e�ect. On the other hand, any
evidence against the null generally carries greater weight as the sample size increases
(Rosenkrantz, 1973:314).

Things that happened or that might have happened

Still other criticisms can be directed against the test paradigm presented so far. These
criticisms are related to questions regarding what happened in the test as opposed to
what might have happened.
A quite general criticism in this vein is the following. When we decide whether to

accept or rejectH0, we do this by checking whether the empirical data d is in the rejection
set w or not. (Alternatively, we decide upon the fate of H0 by calculating p = P(D∣H0),
an operation exactly equivalent to checking whether d is in w or not, provided that w
has been constructed according to requirements A–C presented above.) Suppose that d
is indeed in w, but that d is among the more moderate – i.e., not extreme – outcomes
included in w. We then reject H0. We may ask why the more extreme outcomes in w,
outcomes that actually did not occur, should be part of our argument for rejecting H0.
Or, using the alternative p value calculation procedure, we may ask why outcomes that
did not occur appear in the calculation of p. Since these outcomes did not occur, how
come they play such an important role in the hypothesis testing? Wouldn’t it be more
suitable to perform a test that takes into account only the actual data, not hypothetical
outcomes that did not occur and that are possibilities according to a hypothesis we might
not even believe in?
This criticism questions the soundness of forming a region of rejection in the �rst

place. In a well-known example due to Fisher, a lady says that by drinking tea with milk
she will be able tell whether the milk or the tea infusion was added �rst to the cup. The
lady is put to test and asked to taste the tea from eight cups ordered randomly, where tea
was added �rst in four cups and milk was added �rst in the remaining four. The lady is
asked to divide the eight cups into two sets of four cups each, hopefully agreeing with
the treatments they have received. There are 70 ways of choosing four objects out of
eight, disregarding the ordering. (Generally, there are n!

(n−k)!k! ways of selecting k objects
out of n if the order is disregarded.) What if the lady picks three correct cups and one
wrong? Fisher writes:

“In the present instance ‘3 rights and 1 wrong’ occurs 16 times, and ‘4 right’ occurs
once in 70 trials, making 17 cases out of 70 as good or better than that observed. The
reason for including cases better than that observed becomes obvious on considering
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what our conclusions would have been had the case of 3 right and 1 wrong only 1
chance, and the case of 4 right 16 chances of occurrence out of 70. The rare case of 3
right and 1 wrong could not be judged signi�cant merely because it was rare, seeing
that a higher degree of success would frequently have been scored by mere chance”
(Fisher, 1951:15).

Fisher seems to cover what I have called properties A and B for a good rejection set, but
it is doubtful whether he also covers C. Whether Fisher’s argument is good enough is a
question about which each reader may form an opinion.
As another example of a possible criticism arising from re�ections on what might

have happened, consider the following story.15 Suppose that we wish to test whether the
average IQ score in a particular population is higher than the general population average
or not. From the particular population we select �ve people at random. Our general
null hypothesis H0,gen is that there is no di�erence between the particular population
and the general population. For the general population we assume that the individual
IQ’s are outcomes of theN (100, 152) distribution, i.e. a normal (Gaussian) distribution
with expected value 100 and variance 152 (this is known from large IQ tests previously
performed). A suitable H0, then, is that the mean value for our population of �ve people
is an outcome of theN (100, 152/5) distribution. Our test statistic is the arithmetic mean
T(d) = d̄ = (∑5i=1 d i) /5. With p0 = 0.05 and a one-sided test (remember, we were only
interested in whether the particular population had a higher average IQ than the general
population) we �nd that we should reject H0 if the test statistic d̄ (the arithmetic mean)
in our group of �ve people is larger than 111.0. The rejection set w is then the set of
ordered individual IQ values < d1 , d2 , . . . , d5 > such that their arithmetic mean d̄ is larger
than 111.0:

w = {< d1 , d2 , . . . , d5 > ∶T(d) > 111.0}.

Suppose that we obtain the empirical test statistic value d̄ = 115. This leads to a rejection
of H0. So far, so good.
Now suppose we receive a letter from the company from which we bought the tests

and grading equipment, stating: “We have found out that our computer program was
partly malfunctioning on the day of your test. Any mean score d̄ below 100 was reported
as 100. For scores d̄ above 100 the program produced the correct results.” It may seem that
we need not worry, since we obtained a mean score d̄ above 100. But this is a potential
matter of dispute, for the letter indicates that our null hypothesis H0 is inaccurate: it is
not true that we should have expected d̄ to be an outcome of aN (100, 152/5) distribution
under H0,gen. According to theN (100, 152/5) distribution, values below 100 are fully
possible, but according to the information from the company, values below 100 were in
fact impossible on the day of the test.
So, you might say, we used an erroneous H0 and hence the test is invalid. Or you

might say that the test is still valid, because the new information doesn’t matter.
The question is to what extent whatmight have happened but actually did not happen

casts doubt upon the test procedure. We actually got the result d̄ = 115 and there is no
reason to suspect that it is wrong. Also, we know from numerous earlier studies that
individual IQ measurements in the general population can be regarded as outcomes of a
N (100, 152) distribution and hence that a �ttingH0 for testing the mean value in a group
of �ve people is that this value comes from aN (100, 152/5) distribution. The letter from

15The scenario has been inspired by Efron (1978:236f).
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the company did not change any of these facts. Still, the letter from the company tells
us that if we had got a result d̄ = 100 from the computer program it would have been
irrelevant to compare this �gure with a hypothesizedN (100, 152/5) distribution. The
letter tells us that theN (100, 152/5) distribution is not an appropriate H0 instantiation
for all possible outcomes that d̄ could assume. The question is: does it matter, now that
we actually got d̄ = 115?
It might be argued that it doesn’t, for the following reason: If we had known about the

malfunctioning computer programbefore the test, we could have adjustedH0 accordingly.
We could have assumed that theN (100, 152/5) distribution was correct only for values
larger than 100. This would have lead to a rejection set w identical to the rejection
set actually used. Since w and the p0 associated with it would remain una�ected, we
conclude that it doesn’t matter. This seems reasonable.
Now let us imagine a slightly di�erent story. Instead of getting d̄ = 115, assume we

got d̄ = 100 and then received the letter from the company as above. With d̄ = 100 we
would accept H0. Again, the letter would not change w nor p0, and we can be certain
that the result we got ought not lead to a rejection of H0. So again we could argue that
the test in the narrowest sense – i.e, whether to accept or reject H0 – is as certain as it
could be. The di�erence is: this time we cannot trust the result d̄ = 100. Maybe the real
mean value is less than 100. This also means that we cannot compute the exact p value
for the actual result.
Or consider another alteration to the original story. Instead of a one-sided test, we

perform a two-sided test with p0 = 0.05. Calculations show that for such a test, H0 is
rejected if d̄ < 86.9 or d̄ > 113.1. Assume that we get the empirical result d̄ = 115 and
that we receive the letter from the company as above. Our result is again clearly in the
rejection set w and is una�ected by the information from the company. But this time,
half of the set w is a�ected: it is simply impossible to reject H0 by getting a d̄ value lower
than 86.9. Does this invalidate the test as a whole?
A �nal version of the story might be the following. We perform a one-sided or

two-sided test as above, we get d̄ = 115 and then receive a letter from the company stating:
“On the day of your test, results above d̄ = 115 were misrepresented; unfortunately, we
don’t know exactly how. Results up to and including d̄ = 115 are correct.” Although the
result we actually got is correct, we may hesitate to accept the test, for we no longer know
the exact size of w.
At which point in the di�erent variants of the story recounted above does the test

become invalid (if at all)? It is not trivial to give an answer, and we will not pursue the
question here. One thing should be noted, though. Even when the result we actually got
remained una�acted by the faulty program, the letter from the company could in�uence
the validity of the test. How is that possible? The answer is (arguably) that the whole
outcome space is relevant to the interpretation of the test. Although the faulty program
a�ects only outcomes that did not occur, this is relevant to the interpretation of the whole
test.

Temporal aspects

There is also an interesting temporal aspect in the IQ story: could information that we
learn a�er the test invalidate it? On a very general level, the answer is yes, of course.
We could learn for example that we made a miscalculation. That would invalidate the



16 jesper jerkert

test. But in the case of the IQ test, we have learned (in all variants of the story) that H0
was not an appropriate hypothesis for all possible outcomes. We have viewed this as a
genuine problem, though of course we could have “solved” it by simply changing H0
a�er the collection of data. Changing H0 a�er the collection of data is not, however, seen
as appropriate in the test scheme under consideration. One important reason for this is
that the actual data may in�uence the choice of hypothesis, opening up possibilities of
cheating by picking a hypothesis already known to �t the data.
This is also related to the topic of optional stopping, i.e. the test is terminated at

a point not decided in advance. In fact, if we allow tests where the number of trials
has not been decided in advance, it is fully possible for a given set of data to be judged
by very di�erent hypotheses. Suppose we would like to test a hypothesis regarding the
probability that a coin lands heads. We could imagine two di�erent plans for performing
the experiment (Mayo, 1981:185). (1) We decide in advance to keep tossing the coin until
10 heads are obtained. It turns out that we need to toss the coin 25 times. (2) We decide
in advance that we should toss the coin 25 times. It turns out that we get 10 heads. In
(1), we must formulate a H0 for the distribution of the number of tosses required. In (2),
H0 must specify the statistical behavior of the number of heads, provided that we toss
the coin 25 times. These are di�erent hypotheses. Hence, the result may lead to di�erent
conclusions.16 One might therefore ask critically: Should not a given result always lead
to the same conclusion irrespective of how the hypothesis has been phrased?

Summary of criticisms

We have discussed several problems, or potential problems, with the hypothesis testing
model used so far. These can be summarized as follows:

– When we reject a null hypothesis, the test cannot tell us which alternative hypoth-
esis is more credible.

– Even when we retain the null hypothesis, the test does not tell us how much
credibility we should ascribe to it.

– The test gives us a value of P(D∣H0), also known as the p value, but this tells us
very little. An arguably more interesting �gure would have been P(H0∣d).

– Is the justi�cation o�ered so far for the selection of w good enough?
– The test takes into account hypothetical outcomes that did not occur, and could
be sensible to issues of timing and new information that should not, it might be
felt, have any in�uence.

Some of these criticisms are quite sweeping. Perhaps a few of them should be dismissed
simply on the ground that trying to meet them would ruin the possibilities of doing
meaningful tests. In other words, they might be the price to be paid in order to perform
reasonable tests at all. This text is too short to discuss all the problems above in detail.
But two more models for statistical hypothesis testing will be presented brie�y, the
Neyman–Pearson model and the Bayesian approach. They deal with various aspects of
the encountered problems.

16Cf. the discussion starting on page 20 about nulls and how a given set of data can support di�erent and
even inconsistent nulls.
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The Neyman–Pearson contribution

Alongside Ronald Fisher, the most important �gures in the recent history of statistical
hypothesis testing are Jerzy Neyman (1894–1981) and Egon S. Pearson (1895–1980). They
co-authored a number of statistical papers in which they tried to solve some (by no
means all) of the problems listed above.
So far, all tests discussed have concerned only one explicit (mathematically modeled)

hypothesis each. This hypothesis has been called H0. (In addition, we have noted that
there may be auxiliary hypotheses involved, but these have not been formulated or
modeled explicitly.) According to Ronald Fisher, a single hypothesis is all you need
in order to perform a statistical test (Hacking 1965:82f). The Neyman–Pearson (N–P)
theory emphasizes the need for alternative hypotheses.
A clear description ofN–P theory can be found in the introductory section ofNeyman

& Pearson (1936). Condensed into one sentence, the theory says: “Arrange your test so as
to minimize the probability of error” (Neyman & Pearson, 1967:203).
Neyman and Pearson note that there are two kinds of error that are relevant in tests

of a hypothesis H0 (against an alternative hypothesis H1). The error of the �rst kind or
type I error is to reject H0 although H0 is true. The error of the second kind or type II
error is to accept H0 although H0 is false. These errors, Neyman and Pearson say, will
normally lead to very di�erent consequences and should therefore be distinguished.
For example, assume that a manufacturer of lamps wishes to test whether a batch of

1500 lamps adhere to the conditions laid down in a written speci�cation regarding their
initial e�ciency as light producers. The manufacturer measures the initial e�ciency
in an appropriate way for a few lamps selected at random from the batch, assuming
that the tested lamps will represent the whole population of lamps. If the manufacturer
concludes from the test that the lamps are OK, but a high proportion is in fact faulty,
the manufacturer’s reputation may su�er from allowing a faulty batch of lamps to go on
the market. On the other hand, concluding from the test that the batch of lamps is not
good enough, when in fact it is good enough, will result in higher expenses (from the
destruction of good lamps or from the arrangement of further tests). We see that the
consequences of the two possible errors are quite di�erent from one another.
Formally, Neyman and Pearson proceed like this: Let x1 , x2 , . . . , xn be a system of

variables the values of which can be found through observation. A system of actual values
x1 , x2 , . . . , xn can be represented by a point E in the n-dimensional spaceW , which is
called the sample space.17 E is called the sample point. The variables x1 , x2 , . . . , xn are
random variables if for every subset w inW there is a number P(E ∈ w) that represents
the probability that E is inw. We assume that a function p(x1 , . . . , xn) = p(E) is de�ned
inW such that the value of P(E ∈ w) can be found by calculating the integral ∫w p(E).
A test of the hypothesis H0 can be seen as equivalent to rejecting H0 when E falls within
a speci�ed set w, called the critical region. The ratio w/W is called α; i.e. the probability
is α that a sample point E picked randomly fromW is in w. α is identical to the type I
error.
The type I error level is determined in advance by the researcher. Of course, it should

be quite low. The type II error (the probability of accepting H0 although an alternative
hypothesis H1 is true) may be called β. This error should be kept low as well, but the null
hypothesis H0 is normally selected so that it is more important to keep α low than to

17In the list of Fisherian test steps, I called this the “outcome space”.
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keep β low. The quantity 1 − β is the probability of correctly rejecting H0 and is called
the power of the test. A good test, Neyman and Pearson say, is one in which the power is
maximized for a given level of α.
Testing H0 against a two-sided, non-speci�c alternative hypothesis H1 (i.e., the

expected value under H1 may be less than or greater than the expected value under H0),
will lead to two-sided tests. On the other hand, testing two speci�c hypotheses against
each other, or a speci�c H0 against a one-sided H1, will normally lead to one-sided
tests with respect to H0, for the only important di�erence between the hypotheses will
usually be their expected values. If, for example, the expected value under H0 is less
than the expected value under H1, only values in the upper tail of the probability density
distribution for H0 will be included in the rejection set w. Although outcomes falling
into the lower tail of H0 are just as unlikely as values in the upper tail under H0, they are
even less likely under H1 (unless the H1 distribution has a much larger variance than the
H0 distribution) and will therefore not lead to the rejection of H0.
When we discussed the formation of a rejection set under H0, we applied conditions

A–C (above, page 6). In fact, these conditions can be subsumed under a common
argument, according to N–P theory, namely the argument of minimizing error (and
maximizing power). So this is one problem that N–P theory can claim to be able to solve,
out of those listed on page 16.
By allowing two hypotheses to be mathematically modeled and tested against each

other, N–P theory is also in a position to recommend another speci�c hypotheses when
the null hypothesis (H0) is being rejected. This, too, can be seen as an answer to one
of the problems listed on page 16. However, any intelligent proponent of N–P theory
must admit that H0 and the alternative H1 may not be equally likely from an informed
point of view. For example, H0 may be the hypothesis that a person will correctly guess
which side of a die will show up with probability 16 (i.e., no paranormal ability), whereas
H1 may be that the probability of being right is 12 in each case, which would amount
to a considerable paranormal ability (or cheating, or a badly performed experiment).
When we get a result that tells us to reject H0 we may still hesitate to adopt H1, given our
previous knowledge of the (non-)existence of paranormal powers. From this perspective,
the problem of selecting the most credible hypothesis remains largely unsolved even
within the N–P paradigm. But when there is no a priori aversion towards an alternative
hypothesis, N–P theory can do the job of selecting the hypothesis best supported by data.

Fisher vs. Neyman–Pearson

There are great similarities between Fisher’s and Neyman–Pearson’s theories of testing.
The N–P theory is perhaps a little clearer when you read the original articles. This is
mainly due to Fisher’s habit of teaching by example rather than by laying down �rm
principles. Someone has noted that to Fisher, signi�cance was the most central term;
indeed, he coined the phrase “test of signi�cance”. To Neyman and Pearson, it has been
argued that hypothesis was the key concept. But this di�erence is of course not very
informative.
To appreciate philosophical di�erences, however, we need look no further than the

probabilities denoted α and p, respectively. O�en the quantity that I have denoted p0 in
connectionwith Fisher is called α in statistical textbooks, thereby intermingling Fisherian
and N–P concepts. Indeed, the p0 denotation is my own invention, and many textbooks
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just say that the p value is to be calculated and compared with the predetermined error
level α. But it could be argued that a Neyman–Pearson type I error probability α is not
the same entity as Fisher’s p value. The former is a speci�ed error probability, the latter is
the probability of obtaining a result at least as extreme as the one actually obtained, given
H0. They are not identical in terms of their meaning and philosophical justi�cation.
The p value is intended to measure evidence (or rather, evidence against a hypothesis)
and is calculated a�er the collection of data. It alone is su�cient in order to come to
a decision in the Fisherian paradigm: if p is small enough, we reject H0. The quantity
α, on the other hand, is a pre-determined (and hence not measured) error level which
must be understood in a frequentist sense: if H0 is true and the test is imagined to be
repeated inde�nitely with data drawn from the same population, then we will reject H0
incorrectly with probability less than or equal to α in the long run. But to Fisher, the p
value was to be understood exclusively as a measure of evidence against a hypothesis
(namely, H0). He explicitly repudiated any frequentist interpretations of p:

“On the whole the ideas (a) that a test of signi�cance must be regarded as one of a
series of similar tests applied to a succession of similar bodies of data, and (b) that
the purpose of the test is to discriminate or ‘decide’ between two or more hypotheses,
have greatly obscured their understanding, when taken not as contingent possibilities
but as elements essential to their logic. (. . . ) Though recognizable as a psychological
condition of reluctance, or resistance to the acceptance of a proposition, the feeling
induced by a test of signi�cance has an objective basis in that the probability statement
on which it is based is in fact communicable to, and veri�able by, other rational
minds. The level of signi�cance in such cases ful�ls the conditions of a measure
of the rational grounds for the disbelief [in H0] it engenders. It is more primitive,
or elemental than, and does not justify, any exact probability statement about the
proposition” (Fisher, 1956:42f).

Also, in the N–P paradigm α is mentioned in connection with the other possible error
probability, β. But according to Fisher, there is no need for hypotheses other than H0,
and therefore β has no meaning in his theory.

In terms of measurement of credibility, Fisher preferred P(d∣H) or P(D∣H). The
latter is the signi�cance. The former he called “likelihood”, thereby using a word that up
until then had been considered an exact synonym for “probability” (Halldén 2003:126).
Neyman–Pearson thought that the fraction P(D∣H)

P(D∣¬H) was more interesting than just
P(D∣H) (Neyman & Pearson, 1928).

The di�erences between Fisher on the one hand and Neyman and Pearson one the
other have been assessed in diverse ways by di�erent authors. There is no doubt that
the philosophical underpinnings (and implications) di�er. To what extent statisticians
should care about this is a matter of debate. Hubbard & Bayarri (2003) express annoyance
that Fisherian and N–P concepts are o�en intermingled without philosophical re�ection.
By contrast, Lehmann (1993) emphasizes the similarities and argues that from a practical
standpoint the theories are complementary rather than contradictory. (For a fascinating
historical account of Fisher’s and Neyman’s work, see Lehmann, 2011).



20 jesper jerkert

The role of the null

In this text, we have mentioned several times that hypotheses being tested are o�en of
null type. But we have not explained what this means, though the reader might have
formed some ideas about it from the presented examples.
What should be clear is that there seems to be an asymmetry between the null

hypothesis (H0 or the more general H0,gen) and any alternative hypotheses in that H0
is given the bene�t of doubt and the error associated with rejecting H0 incorrectly is
controlled and held at a well-de�ned (low) level, namely α. Actually, there are three main
ways of justifying such an asymmetry (Godfrey-Smith, 1994).
First, there is a semantic justi�cation, giving attention to the meaning of the term

“null”. The idea is that at least some hypotheses are “natural nulls”; they state that there is
no di�erence between groups, nothing is going on, there is no e�ect, etc. So we could
take hypotheses of “no e�ect” as nulls. If we do so, it is reasonable to view the type I
error as more serious simply because of Occam’s razor: rejecting H0 falsely calls for a
more complex model than is needed. Therefore, there should be a bias in favor of the
simpler null hypothesis. Of course, α must be smaller than β (in the Neyman–Pearson
terminology) for this bias to be established.
Secondly, there is a pragmatic justi�cation associated with the writings of Neyman

and Pearson. They argue that one of the decisions associated with hypothesis testing
(accepting H0 or rejecting H0 in favor of an alternative hypothesis) is usually more
serious than the other, in the sense that it leads to less wanted consequences for whoever
performs the test. The argument is then simply a de�nition:

“The error that a practising statistician would consider the more important to avoid
(which is a subjective judgment) is called the error of the �rst kind” (Neyman,
1976:161).

Error of the �rst kind (type I error) is the error associated with the faulty rejection of
H0. So Neyman and Pearson say that the hypothesis the rejection of which is the most
serious among available hypotheses is to be the null. There is no guarantee that the
hypothesis judged to be the null according to the semantic view is the null according to
the pragmatic view, too.
A third justi�cation could be called doxastic (a term meaning ‘related to belief ’).

According to this view, researchers have di�erent attitudes towards di�erent hypotheses.
When H0 is rejected, this is seen as an important knowledge gain. But when H0 is kept,
this step is more seen as a suspended judgment; the researcher tentatively holds H0. This
view has been advanced by Isaac Levi (1962). In the framework of a doxastic justi�cation
for the selection of a null, any hypothesis could be regarded as the null as long as the
rejection of this hypothesis would be seen as an important knowledge gain. There is no
straight-forward mapping to the semantic and pragmatic justi�cation views above.
If one consults statistics textbooks one will �nd a mixture of justi�cations for the

selection of null hypotheses (Godfrey-Smith, 1994). The Neyman–Pearson pragmatic
justi�cation seems to have been widespread in the 1950’s and 1960’s, when Neyman’s
and Pearson’s conception of how to perform statistical hypothesis testing was dominant.
Today, the semantic justi�cation is likely to be at least as common as the pragmatic
justi�cation. Some textbooks simply avoid giving any particular justi�cation for nulls,
for example the Swedish textbook already mentioned, stating no more than this:
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“We would like to test some null hypothesis H0 regarding the distribution. The
null hypothesis amounts to a certain speci�cation of the distribution” (Blom et al.,
2005:322, my translation).18

Does it really matter which hypothesis is labeled the null? Yes, it does. Since the
null hypothesis is conventionally given the bene�t of doubt, it can be quite simple to
state several hypotheses that would be consistent with a given result. Whichever was
called the null will then be supported by the data. Here’s a very simple example: Suppose
we toss a coin 40 times to test the probability of getting heads. One null hypothesis
might be that the number of heads is an outcome of a binomial distribution Bin(40, 0.5).
Another null hypothesis candidate could be that the result is an outcome of a Bin(40,
0.55) distribution. Now suppose that we get the empirical result d = 21. This result is
consistent with both hypotheses with α = 0.05 (and also for considerably smaller values
of α). Hence, whichever hypothesis was selected as the null would be supported by the
outcome of the test.
The example above involves hypotheses where a parameter to be modeled, θ, is

assumed to have one speci�c point value. It is perhaps not surprising that di�erent point
values can be supported by the same set of data. However, it is fully possible to give an
example where two hypotheses state two non-overlapping ranges for a parameter and
both still get support from the same empirical set of data (Rosenkrantz, 1973:315): We toss
a coin 100 times in order to test the probability of getting heads up in each toss, which
we call θ. Suppose we had taken 0.45 ≤ θ ≤ 0.55 as our null hypothesis. For α = 0.05
calculations assuming a binomial distribution would show that this hypothesis should be
rejected if d < 37 or d > 63. Suppose that our empirical result from 100 tosses is d = 50.
This result will then make us accept the hypothesis 0.45 ≤ θ ≤ 0.55. On the other hand,
had we taken θ > 0.55 as our null hypothesis, calculations would show that for α = 0.05
we should reject this hypothesis if d < 47. Thus, the actual data d = 50 would make us
accept the hypothesis θ > 0.55. Hence, both 0.45 ≤ θ ≤ 0.55 and θ > 0.55 are supported
by the data although these hypotheses are jointly inconsistent.

Nulls in natural and social sciences

Sometimes it is argued that nulls have di�erent roles in di�erent �elds of inquiry. There
is some truth in this assertion. For example, within psychology it seems to be widely
held that nulls are usually not interesting, and that only rejections of the null are worth
publishing. On the other hand, in evolutionary biology, statistical tests supporting
the (already well-corroborated) theory of evolution are considered worth publishing
(Godfrey-Smith, 1994:285, 289).
Another perhaps more striking di�erence between academic �elds may be whether

the null is a point hypothesis (i.e., a parameter assumes a certain value according to the
null) or a directional hypothesis (i.e., a parameter deviates from a value in a speci�ed
direction). The former seems to be more common in the natural sciences than in the
social sciences.

18Original text: “Vi vill pröva en viss nollhypotes H0 rörande fördelningen. Nollhypotesen innebär att man
på något sätt speci�cerar hur fördelningen ser ut.”
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Bayesian hypothesis testing

It is not di�cult to �nd situationswhere Bayes’s theorem appears to be useful in hypothesis
testing. Here is a typical textbook example (Borel, 1914:96�).
Two urns A and B contain four balls each. Urn A holds 3 white balls and one black;

B holds one white ball and 3 black. One ball is drawn randomly from one of the urns and
is found to be white. What is the probability that the white ball was drawn from A? We
write HA for the hypothesis that the ball was drawn from A and HB for the hypothesis
that the ball was drawn from B. The available evidence (the drawn ball being white) is
denoted E. We want to �nd P(HA∣E). According to Bayes’s theorem, we have

P(HA∣E) =
P(E∣HA)P(HA)

P(E)
,

where the denominator can be rewritten, using the law of total probability, so that we get

P(HA∣E) =
P(E∣HA)P(HA)

P(E∣HA)P(HA) + P(E∣HB)P(HB)
.

In order to use this formula, we must know the values of P(HA) and P(HB), i.e. the
probabilities of selecting urn A or urn B when the ball is drawn. If we lack any infor-
mation to the contrary, it may seem reasonable to take P(HA) = P(HB) = 1

2 . Plugging
probabilities into the formula will then give

P(HA∣E) =
3
4 ⋅

1
2

3
4 ⋅

1
2 +

1
4 ⋅

1
2
= 3
4 .

Similarly, we get P(HB ∣E) = 1
4 , of course. In other words, it is three times more likely

that the ball was drawn from A than from B. Using Bayes’s theorem, we have judged one
hypothesis to be more likely than another. There were two hypotheses exhausting all
possibilities, and since we we had no indication that one of the urns was more likely to
be selected than the other, it was reasonable to use P(HA) = P(HB) = 1

2 .
Hardly anyone would object to the reasoning above. And still, this simple example

contains an embryo for performing hypothesis testing in a way quite di�erent from the
suggestions due to Fisher and Neyman–Pearson. For if we can use Bayes’s theorem to �nd
P(HA∣E), why couldn’t we use the very same theorem to �nd P(H0∣d) in a large number
of situations? A�er all, the evidence E must be understood as identical to what has been
called the data d in the Fisherian and N–P settings. According to Bayes’s theorem, then,
we �nd that

P(H0∣d) =
P(d∣H0)P(H0)

P(d)
or

P(H0∣d) =
P(d∣H0)P(H0)

P(d∣H0)P(H0) + P(d∣H1)P(H1)
in the expanded form, where H0 and H1 must be understood as exhaustive alternatives
(P(H0)+P(H1) = 1), i.e.H1 is the negation ofH0. If there are more than two hypotheses
exhausting all possibilities, the denominator will have to be expanded accordingly.
No one denies the general validity of Bayes’s theorem, so the formulae above are

correct and can be used to �nd P(H0∣d). But to get P(H0∣d), we have to enter values
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of P(d∣H0), P(d∣H1), P(H0), and P(H1) according to the bottom formula. The �rst
two – P(d∣H0) and P(d∣H1) – should be easy to compute, provided we have formulated
H0 and H1 mathematically. Also, P(H1) is simply 1 − P(H0) if H1 is the negation of H0.
This leaves only P(H0) to be stated. But since we want to compute P(H0∣d), is it at all
feasible to state P(H0)?

Actually, it is. But we then have to view P(H0) as a more or less subjective esti-
mate re�ecting our knowledge before we have learned about the data d. In a Bayesian
framework, P(H0) would then be called the prior or (in Latin) a priori probability. The
probability P(H0∣d) that we get a�er having taken d into account is called the posterior
or a posteriori probability. In the example with the urns, above, P(HA) = P(HB) = 1

2
were our prior probabilities.

Within the framework of Bayesian hypothesis testing, then, we are able to produce
probabilities of hypotheses given the collected data, that is P(H0∣d), by inserting a value
of P(H0) that we believe to be reasonable. This is nice, since P(H0∣d) seems more
interesting than the p value P(D∣H0). But the price to be paid is quite high: we need to
understand probabilities as subjective measures of the credibility of hypotheses. Anyone
unwilling to support this particular understanding of probability must be reluctant to
adopting Bayesian hypothesis testing.

And even if personal probabilities are accepted, there are other obstacles in the
Bayesian framework (Efron, 1978:236). How are we to �nd a prior value or distribution
when there is no obvious one? What about the situation where an unknown parameter is
known to be a physical constant with no random character and we must come up with a
prior probability distribution for this parameter in a Bayesian test where the value of the
parameter is to be determined experimentally, is such a Bayesian prior reasonable at all?
Also, we could imagine situations where we wish to create a Bayesian prior expressing
ignorance, but this ignorance can be assigned quite di�erent numerical values depending
on how the available alternatives are phrased; e.g., the probability of an object being
blue is 12 if the only alternative is not-blue, but so is the probability of the same object
being red when contrasted with not-red, or black when contrasted with not-black. But
each of P(blue), P(red), and P(black) cannot be 12 since their sum exceeds one. Even
for continuous priors, there is a general problem of �nding the correct one for a given
parameter θ. For example, what appears to be a �at, non-committal prior in θ may not
be so �at in, say, f (θ) = θ2. The �atness, then, will depend on what function involving
the unknown parameter one is interested in.

It is clear that the Bayesian approch to hypothesis testing has its own problems. All the
same, in principle it solves a lot of problems that plague the other approaches presented
earlier (cf. the list on page 16). Bayesianism is not just a theory of hypothesis testing,
but a theory of how new evidence is (and should be) incorporated in the enterprise
of knowledge and science. Bayesianism has some followers among philosophers and
statisticians, but in numbers of supporters among practicing scientists it is very far from
the popularity of Fisher, Neyman–Pearson, or a merged Fisher/N–P theory. On the other
hand, the popularity of Bayesian methods has increased during the last decades due to
more powerful computers making these methods applicable in an expanding number of
�elds.
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Statistical hypothesis testing in the philosophy of science

Last but not least, I would like to consider a few connections between statistical hypothesis
testing and well-known concepts and theories in the general philosophy of science.
Although I havemade a few philosophical points so far, I have not tried to frame statistical
hypothesis testing in a general philosophy of science curriculum. In fact, such a framing
is both possible and interesting.
First, we could note that there is no substantial di�erence between statistical and

“ordinary” (non-statistical) hypothesis testing with respect to the di�culty of proving
an isolated hypothesis wrong. As pointed out in many textbooks in the philosophy of
science, it seems to be impossible to test a hypothesis in isolation, for there are always
some auxiliary hypotheses that we tacitly assume to be true, and that in conjunction
with the explicit hypothesis (H0 or whatever it is called) form the set of hypotheses that
is really put to test. This impossibility is sometimes referred to as the “Duhem–Quine
thesis”.19
The concept of underdetermination is well-known from the philosophy of science. In

this context, underdetermination denotes the fact that any set of data can be accounted for
by several hypotheses or theories. This has its direct equivalence in statistical hypothesis
testing; as we have seen, every test statistic value T(d) can be accounted for by several
hypotheses. This means that every statistical hypothesis is underdetermined by the
available data.
Another area where statistical hypothesis testing meets general philosophy of science

is in the possibility of a connection to Karl Popper’s falsi�cationism. Ronald Fisher has
stated:

“[I]t should be noted that the null hypothesis is never proved or established, but is
possibly disproved, in the course of experimentation. Every experiment may be said
to exist only in order to give the facts a chance of disproving the null hypothesis”
(Fisher 1935:19).20

Note that this statement was made already in 1935, only one year a�er the publication
of the German edition of Karl Popper’s seminal work Logik der Forschung (a rewritten
English version, The Logic of Scienti�c Discovery, appeared in 1959). Clearly, there is
a similarity between Popper’s falsi�cationism and Fisher’s statement, but the general
understanding is that this is just a coincidence, at least in terms of origin. Nonetheless,
one could argue that “[s]tatistical tests are (. . . ) based implicitly on methodological
falsi�ability, and their introduction and widespread adoption by statisticians provides
striking corroboration of the value of Popper’s approach” (Gillies, 1995:110f).
On the other hand, the di�erences between the Fisher and the Neyman–Pearson

approaches are not greater than allowing another commentator to state the following:
“In fact, one might fairly regard Neyman–Pearson theory as the statistical embodiment
of Popperian methodology” (Rosenkrantz, 1973:320). So perhaps one should not try to
marry Fisherian or N–P theory with falsi�cationism, but accept that both approaches
bear resemblance with the Popperian idea.

19Pierre Duhem (1861–1916) was a French physicist, mathematician, and philosopher of science. W. V. O.
Quine (1908–2000) was an American philosopher.
20Also in later editions, e.g., Fisher (1951:16).
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Statistical hypothesis testing has secured a prominent place in the methodological
arsenal of many natural sciences, whereas in the social sciences (in particular, economics
and sociology), the proper role of statistical hypothesis testing has been widely debated
(Giere, 1972; Morrison & Henkel, 1970). One of the points repeatedly made in this debate
is the following (Giere, 1972:173). In social science, it can be argued that very o�en
one knows that there is at least some small di�erence between any two parameters (e.g.,
between two groups). Therefore, a null hypothesis stating no di�erence is not credible
in the �rst place, and even if we should accept the null hypothesis according to the test
result, we could believe that it would have been rejected had we taken a larger sample.
So why perform a test at all? This argument has been advanced as a general criticism
against statistical hypothesis testing in the social sciences. But the argument is easy to
refute, at least within the Neyman–Pearson paradigm where two hypotheses are stated:
we are not interested in just any di�erence, but only in di�erences large enough to be
detectable and important.
Still, a general point remains: in the social sciences (and also frequently in medicine)

one seldom believes that a null hypothesis stating no di�erence is completely accurate.
Since the objects of study are human beings – and we know that humans are not o�en
exactly alike – we do not expect group di�erences to vanish completely. Perhaps this is
related to what has been described as a principal di�erence between di�erent �elds on
inquiry, namely that in e.g. psychology one tests directional hypotheses related to low
content theories, whereas in physics one tests point hypotheses related to high content
theories (Giere, 1972:176f).
Finally, it could be noted that statistical reasoning is of interest to philosophers trying

to come to grips with the classical problem of induction. Reasoning very closely related
to that commonly adopted in statistical hypothesis testing has been invoked to solve the
problem of induction (Williams, 1947). This problem, however, is beyond the scope of
the present text.
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